Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Coastal marshes, mangroves, and seagrass sequester significant amounts of “blue carbon” in soils, sediments, and biomass. They have potential as a negative emissions technology. With the increasing policy focus on climate change mitigation, we need to understand and accurately predict wetland carbon processes. Complex interactions of climate, land use, sea level, nitrogen pollution, and human management regulate the strength of the carbon sink and the greenhouse gas balance (including CO2, CH4, and N2O). Our ability to measure and model vertical and lateral exchanges, as well as the soil and sediment processes, at the land-ocean interface is limited. We aim to bring together researchers from various disciplines to discuss coastal carbon and nitrogen pools and fluxes, and their roles in global biogeochemical cycling and climate change mitigation. We also aim to report advances in eddy flux, lateral flux, field experiments, remote sensing, modeling, and synthesis that support coastal wetland carbon accounting.more » « less
-
Coastal marshes, mangroves, and seagrass sequester significant amounts of “blue carbon” in soils, sediments, and biomass. They have potential as a negative emissions technology. With the increasing policy focus on climate change mitigation, we need to understand and accurately predict wetland carbon processes. Complex interactions of climate, land use, sea level, nitrogen pollution, and human management regulate the strength of the carbon sink and the greenhouse gas balance (including CO2, CH4, and N2O). Our ability to measure and model vertical and lateral exchanges, as well as the soil and sediment processes, at the land-ocean interface is limited. We aim to bring together researchers from various disciplines to discuss coastal carbon and nitrogen pools and fluxes, and their roles in global biogeochemical cycling and climate change mitigation. We also aim to report advances in eddy flux, lateral flux, field experiments, remote sensing, modeling, and synthesis that support coastal wetland carbon accounting.more » « less
-
Abstract Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous ‘blue carbon’ studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon‐storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R‐shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision‐making.more » « less
-
Abstract Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We firstdefineeach of the major C pools and fluxes and providerationalefor their importance to wetland C dynamics. For each approach, we clarifywhatcomponent of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such aswhereandwhenan approach is typically used,whocan conduct the measurements (expertise, training requirements), andhowapproaches are conducted, including considerations on equipment complexity and costs. Finally, we reviewkey covariatesandancillary measurementsthat enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.more » « less
An official website of the United States government

Full Text Available